
NPSCS-92-010

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A255 896

Object-Oriented Real-Time Computing

00 Michael L. Nelson, Major, USAF

COM Aug 1992

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, California 93943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

REAR ADMIRAL R. W. WEST, JR. HARRISON SHULL
Superintendent Provost

This report was prepared with research funded by the Naval Research Funds provided by the Naval

Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

I

Michael L. Nelson
Assistant Professor of
Computer Science

Reviewed by: Released by:

VALDIS BERZINS PAUL RTO
Associate Chairman for Dean of Research
Technical Research

UNCLASSIFIED
SECURITY GLASSIGA ION OF- TH1S PAGE

REPORT DOCUMENTAT1ON PAGE
I&. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED ________________
2a SECURITY CLASSIFICATION AUTHORIT Y 3. DISTRIBUTIONAVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION R1EPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPSCS-92-010 Naval Postgraduate School

6a. N AME OF PE~FOFRMING ORGANIZATIO 6b FICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Science Dept . (if applicable) Naval Postgraduate School
Naval Postgraduate School I CS

6c. ADDRESS (Ci State, arnd ZIP Code) 7b. ADDRESS (Ci State, and ZIP Code)

Monterey, CA 93943 Monterey, CA 93943

Be. NAME OF FUNDING/SPONSORING r8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I (if applica ble)
Naval Postgraduate School NPS

8c. ADDRESS (City. State, and ZIP Code) W0. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

Monterey, CA 93943

11. TITLE (include Security Classification)
Object-Oriented Real-Time Computing

12. PERSONAL AUTHOR(S)
Michael L. Nelson

13a. 1 JJE OF EPORT 1b TIMECOVERED14. DATE OF REPORT (Year, Month, Day) 1.PG ?4
Summary IFROM TO___ 1992 August 17

17. COSATI CODES I18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD IGROUP SUB-GROUP I Object-oriented operating systems, programming, programming languag-
__________________________ es, real-time computingreal-time systems, simulation

19. ABSTRACT (Continue on reverse if necessary and identity by block number)

This paper presents a brief overview of object-oriented programming and real-time systems, followed by an in-

depth discussion of object-oriented real-time computing. Examples of object oriented real-time computing systems

are included, with special emphasis given to systems developed at the Naval Postgraduate School.

[UNCLASSIFIED/UNLIMITED [Q SAME AS RPT. Q: DTIC USERS UNCLASSIFIED
Michael L. Nelson 26.P~Fy~d AraC 1e CSN

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

TABLE OF CONTENTS

1 INTRODUCTION ... 1

2 OBJECT-ORIENTED PROGRAMMING 1

2.1 OBJECT-ORIENTED DESIGN ... 2

2.2 CONCURRENT AND DISTRIBUTED OBJECT-ORIENTED SYSTEMS 2

3 REAL-TIME SYSTEMS ... 3

4 OBJECT-ORIENTED REAL-TIME COMPUTING 3

4.1 OBJECT-ORIENTED PROGRAMMING LANGUAGES 3

4.2 OBJECT-ORIENTED OPERATING SYSTEMS 5

4.3 OBJECT-ORIENTED SIMULATION 6

4.3.1 Object-Oriented Simulation of Real-Time Systems 6

4.3.2 Object-Oriented Real-Time Simulation 7

4.3.3 Object-Oriented Simulation Languages 7

4.4 OBJECT-ORIENTED REAL-TIME SYSTEMS 8

5 CONCLUSION S ... 9

APPENDIX: The Actor Model of Concurrent Computation 10

REFERENCES .. 11

INITIAL DISTRIBUTION LIST .. 14

Acce-.io Fr

NTIS CR W.&i

N TI S

l ~~~~~~ ~ ; HiHns I NAItl.L i

1 INTRODUCTION

Object-oriented programming (OOP) is a relatively young field that shows great potential in several areas,

including real-time (RT) systems. The primary benefits of OOP (encapsulation and reusability) are ex-

tremely useful in the RT arena. OOP is also a natural for modeling real-world entities, which increases

its attractiveness for RT programming.

This paper presents a brief overview of object-oriented programming and real-time systems.' This is

followed by an in-depth discussion of object-oriented real-time (OORT) computing, including examples

of object-oriented real-time computing here at the Naval Postgraduate School (NPS) and elsewhere.

2 OBJECT-ORIENTED PROGRAMMING

Unfortunately, OOP means many things to many people, creating a rather confusing situation; it has even

been said that we have created an "Object-Oriented Tower of Babel" [Nelson9lb]. We have found, how-

ever, that the following definition encompasses most of the current ideas about OOP [Wegner87, p.169]:

object-oriented = objects + classes + inheritance2

A class can be thought of as an abstract data type (ADT). It is used to provide a template of variables

and methods (operations) for objects. An object is then an instantiation of a class. Inheritance is simply

a way of sharing code between classes. A subclass inherits all of the variables and methods defined for

its superclass. Inheritance allows for reusability within and between applications [NF92]. A class

hierarchy is a set of classes related by inheritance. With single inheritance (usually referred to more

simply as inheritance), a class is allowed to have at most one superclass. With multiple inheritance (MI),

a class can have any number of superclasses (note that with Ml, the class hierarchy is technically a lattice,

but is still commonly referred to as a hierarchy).

Objects are encapsulated. That is, the only way to access an object's variables is via its methods. While

this enhances reliability, it often decreases efficiency in manipulating the object, although this is usually

not a problem in compiled strongly-typed languages.

'It is assumed that the reader has some previous knowledge of object-oriented programming and real-time systems.
If this is not the case, the interested reader should refer to (Nelson9O, Wegner87] for a more in-depth introduction
to OOP and to [BBBN92, BW90, SR881 for a more in-depth introduction to RT systems.

;Obviously, this definition excludes delegation-based systems. This definition has been extended as "object-
oriented = (objects + classes + inheritance) OR (objects + delegation)" [Nelson9O, p.7]. It should be noted that
languages may also be classified as object-based "if it supports objects as a language feature" [Wegner87, p. 169].
That is, an object-based language does not necessarily include inheritance. However, it is general practice to refer
to a language as object-based if it does not support inheritance and as object-oriented if it does support inheritance.

2.1 OBJECT-ORIENTED DESIGN

Object-oriented design (OOD) often adds to the confusion of OOP as OOD can be used regardless of

whether or not the implementation language is object-oriented (00). Thus we can use an 00 approach

in designing virtually any system, although it might be argued that implementing an OOD in an OOPL

is the 'natural' way to proceed. There are also several schools of thought on how to carry out OOD

[Booch9l, Bulman92, PN91, WWW90]. However, most approaches to OOD still require an expert from

the problem area. [Nelson92]

The Real-Time Object-Oriented Modeling (ROOM) methodology [SGME92 has been specifically devel-

oped for designing OORT systems. Three major principles for the development of a RT methodology

serve as the basis for ROOM: (1) the key modeling concepts must be domain-specific and intuitive; (2)

the methodology must eliminate discontinuities in the development process; and (3) the methodology must

support an iterative computer-based development process and an early execution capability. ROOM is

based upon a single model that takes into account both the modeling dimensions paradigm (structure,

behavior and inheritance) and the abstraction levels paradigm (system, concurrency, and detail).

[SGME92]

2.2 CONCURRENT AND DISTRIBUTED OBJECT-ORIENTED SYSTEMS

Although RT systems do not necessarily utilize multiple processors, it is a fairly common way to achieve
the required processing power. OOP is a 'natural' for concurrent and distributed systems - virtually any
real-world object can be modeled in an OOP system, and as real-world objects can exist and do things
concurrently, the objects modeling them can also exist and do things concurrently [Nelson9la, Nelson92].
A "virtual explosion of concurrency" is possible when you consider that several objects may each be
executing several methods, and that each of these methods may in turn be executing several operations,
with all of this happening concurrently [Nelson91 a].

One problem that remains to be solved is how to decide which objects to load on which processors; con-

ventional OOD only determines what your classes/objects should be, not how to distribute them across

several processors (discussion at [NATO92]). An optimal solution to the task scheduling problem in a

distributed system has been shown to be computationally hard (i.e., NP-complete) [Coffman76, MK841;

as the distribution of classes and objects is a very similar problem, it too is most likely computationally

hard.

We have developed an approach that we call the Decomposition Cost Evaluation Model (DCEM). DCEM

includes a series of equations that are useful in determining which objects/classes to load on which pro-

cessors in a distributed system. These equations determine computation and communication costs for

objects, classes, and class hierarchies. Although this approach does not guarantee an optimal loading

2

strategy, it is useful in comparing various alternatives. We then utilize an approach that we call Confined
Space Search Decomposition (CSSD) to dynamically adjust load balancing at run time. We have also
implemented a distributed dynamic load balancing heuristic that we call Object Reincarnation (OR).
Rather than moving objects from one processor to another, an object dies at one site and is then reincar-
nated at another. [MNK92, Mota92]

3 REAL-TIME SYSTEMS

Real-time is another term that means different things to different people. In general, RT systems have
requirements for both logical correctness and timing. Failure to meet these requirements results in some
form of 'catastrophic' failure, such as lost or damaged equipment, lost production time, human injury or
death, etc. It is important to realize that logically correct results produced too late (i.e., timing require-
ments not met) may be just as unacceptable as incorrect results produced on time. [BBBN92]

RT systems are often classified as either hard or soft. Hard RT systems are those systems in which the
correctness of the system depends on meeting all of the correctness and timing requirements. Soft RT
systems, on the other hand. may still function correctly even if some deadlines are occasionally missed.
[BW901

RT systems often consist of a computer interfaced to some 'critical' system. The computer is typically
dedicated to and/or controlling that critical system. The computer in these types of RT systems are often
referred to as embedded systems, and as such the terms embedded systems and RT systems are often used
interchangeably. [BW90]

4 OBJECT-ORIENTED REAL-TIME COMPUTING

4.1 OBJECT-ORIENTED PROGRAMMING LANGUAGES

Unfortunately, most object-oriented programming languages (OOPLs) were not designed for RT applica-
tions. That is, much like most conventional languages, they do not contain constructs for enforcing timing
constraints. However, in many conventional RT applications, timing constraints are not expressed explicit-
ly in the program, but rather they are described in a separate timing chart [ITM90]; thus non-RT OOPLs
are no worse than conventional languages in this regard. All OOPLs do provide the benefits of increased
encapsulation and reusability. As previously mentioned, equations to determine computation and commu-
nications costs can also be developed, and these could readily be used in developing timing charts.
However, the ideal OOPL for a RT application would allow timing constraints to be directly expressed
within the program. Such OOPLs will now be discussed.

3

ACT+ [Kafura88, KL90]. ACT++ is a concurrent OOPL developed specifically for use in concurrent
OORT systems. One of the main goals in the design of ACT++ was "to develop a language which sup-

ports the powerful actor concurrent computation model and provides software reusability through the class
inheritance of an object-oriented language" [KL90, p.25]. ACT++ is thus an implementation of the actor
model3 in the C++4 OOPL.

AMi [BTDMWL92I. Actra adds the concepts of actors to Smalltalk [PW88]. It "provides an integrated,
multi-user, multiprocessor object-oriented programming environment for use in medium and high
performance industrial applications" [BTDMWL92, p.1]. Actra actors are active objects which are created
and sent messages like ordinary Smalltalk objects, but they can also be activated with independent threads
o" control. Actors can execute concurrently on a multiprocessor. Actra runs on the Harmony real-time
multiprocessor kernel [Barry90, BATW87, MGSW89] whicb is discussed in the following section.

RTC++ [ITM90]. RTC++ is another extension of C++. Its main features are the ability to specify: (1)
a real-time object which is an active entity; (2) timing constraints in an operation as well as in statements;
and (3) a periodic task with rigid timing constraints. RTC++ also supports the ability to avoid the priority
inversion problem (i.e., having a high priority task wait while a lower priority task executes). RTC++ is

designed to run on the ARTS real-time distributed operating system kernel 1TM89] which is discussed in
the following section.

RTC++ adds two types of objects to C++. An active object allows multiple threads (i.alled member

threads) of control (a conventional C++ object has only a single thread of control). A real-time object
is an active object defined with timing constraints, which can be specified for an entire operation or for
each individual statement. By allowing timing constraints to be expressed within the program, timing
errors can be bound at run-time as well as compile-time. When a transaction cannot finish within the

specified time, its execution is aborted and alternative instructions are executed in order to satisfy the
timing constraints. This is accomplished by an exception handler.

Periodic tasks are specified via a cycle statement. A cycle can be declared with a starting time, ending
time, period, and a deadline. Priority inheritance is used to avoid the problem of priority inversion. That

is, when a task is providing a service for some client, then the server inherits the priority of that client.
Additionally, if a client with an even higher priority is waiting for service, then the server inherits the
priority of that waiting client's priority.

*The actor model is briefly discussed in the Appendix.

4C++ [Stmstrup86, WP88] is an object-oriented extension of C (KR78].

4

4.2 OBJECT-ORIENTED OPERATING SYSTEMS

Object-oriented operating systems (OOOS) is another area from which OORT systems can benefit. An

OOOS consists of several objects working together to accomplish the tasks normally expected of an oper-

ating system. These objects, such as a scheduler, can be replaced at any time by another object which is

better suited for a particular application. A real-time operating system (RTOS) is one which is designed

specifically for use in RT systems. In this section, we consider several 00 RTOSs.

Alvha [lJensen92]. Alpha is an experimental operating system kernel designed for use in distributed RT

systems. Scheduling in Alpha is based on the Benefit Accrual Model, in which the overall benefit to the

application for completing a certain task is calculated. This approach allows for graceful degradation

when all deadlines cannot be met by simply accomplishing the most beneficial tasks. This is also referred

to as a "best-effort" scheduling policy.

ARTS [TM891. ARTS is a distributed 00 RTOS intended to provide a predictable, analyzable, and reli-

able environment. Various scheduling techniques and software tools have been developed for analyzing

system schedulability (i.e., for determining whether or not timing requirements can be met). An integrated

time-driven scheduling (ITDS) model is used to predict whether or not various tasks can meet their dead-

lines, and to control which tasks should complete their computations and which should be aborted if all

deadlines cannot be met. Priority inheritance, as previously discussed, is used to prevent priority inversion

among tasks, Objects can be passive or active. A passive object contains no explicit declaration of a

thread which accepts requests. An active object contains at least one such user defined thread (in the case

of multiple threads, it is the responsibility of the object's designer to provide concurrency control).

Threads can be defined as periodic or aperiodic.

CHAOS [GS89]. A Concurrent Hierarchical Adaptable Object System (CHAOS) is an 00 RTOS intended

to support the programming of applications that are accountable, efficient, and predictable. Objects can

be invoked by either control transfer, data transfer, or a combination of the two. Explicit scheduling

parameters can be attached to object invocations. Communication links to objects at different processors

can either be specified by the programmer or left up to the system.

Harmony [Barry9O, BATW87, MGSW89]. Harmony is designed for use in embedded systems. It is not

designed to support program development, this can be done on any host system that has a cross-compiler

for the target system. Harmony is written in C, with a 'small amount' of assembly code. Programs can

be written in any language capable of linking with the C code in Harmony.

5

4.3 OBJECT-ORIENTED SIMULATION

OORT systems can also benefit from 00 simulation. This can be either: (1) an 00 simulation of an RT

system, in which an 00 approach is used in the simulation of an RT system; or (2) an OORT simulation,

in which an 00 approach is used in a RT simulation system. OOP is particularly well-suited for simula-

tion systems in that real-world objects and their activities can be simulated as objects with a set of

methods to manipulate them. 00 simulation also allows for potential changes to a system to be tried out

before actual implementation in the real-world system. Both objects and methods can be modified and/or

replaced at any time to determine their viability. Hybrid simulation systems are also possible, in which

some of the objects in the simulation system are replaced by their actual real-world components.

4.3.1 Object-Oriented Simulation of Real-Time Systems

NPS AUV [BN91, NB921. The NPS Autonomous Underwater Vehicle (AUV) is an unmanned untethered

submarine. Initial software development led to a series of data flow diagrams (DFDs) which modeled both

the hardware and software components of the vehicle, along with the flow of data between the compo-

nents. These DFDs were then used to develop a simulation of the AUV in an 00 environment. Although

only the simple, high-level DFDs have been included in the simulation to date, it still provides a working

model of the AUV which can be used to test control flow and data flow between the various components.

The simulation also provides the ability to test modifications and/or replacements of the components at

any time.

AMEP [Barry89]. The Advanced Modular ESM Processor (AMEP) is being developed by the Canadian

Department of National Defence at the Defence Research Establishment Ottawa. It combines hard RT data

acquisition with knowledge-based signal processing and complex user interfaces. Development was based

"loosely on the actor model" [Barry89, p.257] and it was implemented in Smalltalk on top of the Harmony

00 RTOS. AMEP was built as a prototype system to examine overall viability. Three optimization

techniques were used: (1) recoding frequently invoked methods in a lower level language; (2) re-

implementing an actor as an independent task in Harmony; and (3) creating "virtual devices" which

operate outside of Harmony with an interface much like a hardware device.

LACE [LK92]. Land Air Combat in ERIC (LACE) is an interactive battlefield simulation system (a simp-

lified version of LACE, called Air Combat in Eric (ACE) also exists) developed at Rome Laboratory.

Although LACE was developed mainly to test the applicability of the 00 approach to battlefield simula-

tions, it does serve three practical purposes: (1) to aid in the air-land battle decision making process; (2)

to evaluate Command, Control, Communications and Intelligence related decision aids; and (3) to serve

as an air-land battle training aid. LACE was developed in ERIC, an 00 simulation language which will

be described shortly.

6

4.3.2 "bject-Oriented Real-Time Simulation

NPSNET++ [ZPMW92]. NPSNET is a networked, real-time vehicle simulation system. It is currently

comprised of approximately 20,000 lines of C code. We are just beginning to convert this system to an

00 system (called NPSNET++), using C++. There are currently over 100 different types of vehicles in

the system, and their management has become quite complex. An 00 approach will help to encapsulate

the parameters of the vehicles. NPSNET is also responsible for maintaining a consistent distributed

database representing the 'world,' and an 00 approach should allow for the simplification of the network

messages necessary to change the world's state (either vehicle state changes or terrain modifications).

4.3.3 Object-Oriented Simulation Languages

Although OOP is particularly well suited for use in simulation systems, most OOPLs were not designed

specifically for use in simulation systems. That is, similar to the primary problem of using OOPLs in RT

systems as previously discussed, most OOPLs do not contain constructs for enforcing timing constraints.

However, a few such languages have been developed, and will be briefly discussed in this section.

AWESIME [Grunwald9l 1. AWESIME (A Widely Extensible SIMulation Environment) is a library of

classes for use in parallel programming and process-oriented simulation applications on computers with

a shared address space. It is written in C++ and was developed at the University of Colorado at Boulder.

AWESIME applications typically consist of one or more threads. Threads are instances of classes which

are descendants of the class THREAD. The ,hreads are managed by a 'Cpu Multiplexor' (an instance of

a descendant of the class CPUMUX) that schedules the various threads on the CPU(s). Three forms of

synchronization are provided. Descendants of the class SPINLOCK are used to block a CPU for a thread.

Thread-level locking is provided by descendants of the class RESERVEBYEXCEPTION (such as the class

SEMAPHORE). Individual resources may also be locked.

Descendants of the class SIMMUX are used to impose a global simulated time order over the threads.

Random number generators can be created from descendants of the class RNG. Descendants of the class

SAMPLESTATISTICS are available for use in gathering data and computing statistics.

ERIC and DERIC [LK921. ERIC was developed for use in 00 simulation systems at Rome Laboratory.

It is designed to support the development of intelligent, discrete event simulations. ERIC is written in the

Common Lisp Object System (CLOS [Kecne89]). ERIC includes a special object called the Clock, which

is used to control the simulation clock. Although simulations developed in ERIC are relatively easy to

modify, they do not run in real-time. Therefore, Distributed ERIC (DERIC) is currently under

development, also at Rome Laboratory. DERIC is designed to be upward compatible with ERIC. DERIC

provides for concurrent execution under control of the Clock object.

7

4.4 OBJECT-ORIENTED REAL-TIME SYSTEMS

In this section we briefly discuss various RT systems that have been developed using an 00 approach.

NPSAUV [BMKMN92, Byrnes93]. We are currently in the process of involving OOP in the NPS AUV

itself.5 The Rational Behavior Model (RBM) has been proposed as a three-level software architecture for

controlling the vehicle. The three levels of RBM are the Strategic, Tactical, and Execution Levels. The

Strategic Level is the top-level user interface. It is intended for developing vehicle missions, which are

written in some high-level logic language (such as Prolog [Rowe88]). The Execution Level contains the

code that interacts directly with the vehicle hardware, and is usually written in C. The Tactical Level is

being developed using an object-oriented approach. It serves as the interface between the high-level user

interface code of the Strategic Level and the low-level machine interface code of the Execution Level.

It is tasked with maintaining all vehicle state information, environmental information, (pre-loaded) mission

execution information, and mission log information. Thus, there are four objects residing at the Tactical

Level: the AUV model, the world (environment) model, the mission model, and the mission log. At run-

time, the Strategic and Execution Levels are only allowed to communicate with the AUV model, which

communicates with the world model, mission model, and/or mission log as required. The 00 approach

provides modular, encapsulated code with a well-defined interface at the Tactical Level.

NPS Radar Data Tracking fMota92, MNK92]. We have developed an 00 approach for radar data pro-

cessing in a distributed system.' We first developed the Decomposition Cost Evaluation Model (DCEM)

to help determine what processor interconnection scheme should be chosen from identified alternatives,

and what initial object/class loading scheme should be used. DCEM brings the mapping problem to a

higher level of abstraction where the question is which classes should be loaded on which processors

rather than which tasks should be loaded on which processors. Communication and computation costs

are defined for objects, classes, and class hierarchies. Note that DCEM is not used to identify alternatives,

rather it is used to compare previously identified alternatives. We then devised the Confined Space Search

Decomposition (CSSD) to perform load balancing at run time. We also included a distributed dynamic

load balancing heuristic called Object Reincarnation (OR). Rather than moving objects from one processor

to another, they 'die' in one site (reducing its load) and are 'reincarnated' in another site (increasing its

load). The 00 approach allowed for encapsulated objects with well-defined interfaces, which in turn led

to communication and computation cost equations which were useful both in initializing the system and

in achieving minimal cost run-time load balancing.

'As previously discussed, we have also experimented with 00 simulation of the AUV.

'Note that this is actually a simulation system as the computer system is fed a stream of simulated radar plots.
However, as the radar data tracking system (i.e., the computerized portion of the tracking system) itself could easily
be connected to an actual radar unit, it is cluded here as an OORT system rather than in the previous section on
simulation systems.

8

ARCS [ZJK90, ZS891. ARCS is an 00 approach to RT control systems for remotely operated vehicles

(ROVs) and AUVs under development at International Submarine Engineering (ISE), and is sometimes

referred to as 'Events and Actions.' Events, actions, and vehicle components are implemented as objects

with a well defined set of operations. A list of actions is created that specify what needs to be performed

whenever a piece of data is updated. ISE also developed a "fast and small" preemptive scheduler (called

the Turbo Scheduler) that is responsible for determining what operation(s) to schedule next. That is,
whenever an event (typically an interrupt) occurs, the appropriate actions are scheduled by the Turbo

Scheduler. For this reason, the system is also referred to as 'event-based' or 'event-driven.' One of the

long-range goals of this approach is to allow the user to configure the system by drawing block diagrams

from a library of components. Systems can currently be prototyped by using this library of components

approach.

5 CONCLUSIONS

Object-oriented programming is not a 'cure-all' for all of our problems. It is simply a better approach to

many (if not all) programming projects, including real-time systems. Inheritance allows for increased

system reusability, which is helpful in any application, and encapsulation allows for increased system

reliability, which is crucial in real-time systems.

Object-oriented design methodologies, object-oriented programming 'anguages, and object-oriented

operating systems are being developed specifically for real-time systems. This enhances the value of

utilizing an object-oriented approach in designing and building real-time systems, making such systems

even easic- to design, build, and maintain.

9

APPENDIX: The Actor Model of Concurrent Computation

The actor model [Agha86, KL90, Nelson9la, Nelson92, Wegner87] is not object-oriented as it does not

support any form of inheritance or delegation; rather, it is more appropriately considered to be object-

based. However, it may serve as the foundation for an actor-based OOPL.

An actor is simply an object which responds to messages, but it can only respond to a single message at

a time. A message queue is associated with each actor to hold incoming messages in the order of arrival.

An actor has one or more scripts which it can use in response to various messages (a script is essentially

the equivalent of a method in more conventional OOPLs).

An actor responds to a single method, then 'dies.' One of the things that it must do before dying is to

specify a replacement which will handle any additional messages sent to that actor (actually, the

replacement responds only to the next message before dying; it too specifies a replacement which will

handle the next message, etc). The message queue associated with the original actor is transferred to its

replacement. This replacement may be another actor all together, or, more likely, a 'clone' (possibly

modified) of the original actor. This replacement may be specified at any time. If the creation of the

replacement is specified before the original actor is finished responding to its message, then the

replacement may begin to respond to the nexl message while the original actor is continuing to service

the first message.

Concurrency is supported in many ways. Messages can be sent to several actors, so that each is

responding to its message. In servicing a message (i.e., carrying out a script), the actor may se id

messages to other actors. Those actors begin to service their messages immediately, concurrently with

one another and with the original actor. Each of these actors may in turn send messages to other actor,.

and so on. Additionally, any of the actors involved may specify their replacement before completing their

message, and this replacement may respond to another message, again sending messages to other actors,

creating its own replacement, and so on.

10

REFERENCES

[Agha86] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge,
MA, 1986.

[Bary89] B.M. Barry. "Prototyping a Real-Time Embedded System in Smalltalk," OOPSLA'89, New Orleans, LA,
Oct 1989; special issue of SIGPLAN Notices, Vol 24, No 10, Oct 1989, pp 255-265.

[Barry90] B.M. Barry (Workshop Coordinator). "Workshop: Using OOP for Real-Time Programming," Addendum
to the OOPSLAIECOOP'90 Proceedings, Ottawa, Canada, Oct 1990; special issue of SIGPLAN Notices, Oct 1990,
pp 57-66.

[BATW87] B.M. Barry, J.R. Altoft, D.A. Thomas, and M. Wilson. "Using Objects to Design and Build Radar ESM
Systems," OOPSLA'87, Orlando, FL, Oct 1987; special issue of SIGPLAN Notices, Vol 22, No 12, Dec 1987, pp
192-201.

[BBBN92] S.M. Badr, R.B. Byrnes, D.P. Brutzman, and M.L. Nelson. Real-Time Systems. Naval Postgraduate
School, Monterey, CA, Report No NPSCS-92-004, Feb 1992.

[BMKMN92] R.B. Byrnes, D.L. MacPherson, S.H. Kwak, R.B. McGhee, and M.L. Nelson. "An Experimental
Comparison of Hierarchical and Subsumption Software Architectures for Control of an Autonomous Underwater
Vehicle," Symposium on Autonomous Underwater Vehicle Technology (AUV'92), Washington, D.C., Jun 1992, pp
135-141.

[BN91] R.B. Byrnes and M.L. Nelson. "An Object-Oriented Simulation of an Autonomous Underwater Vehicle,"
22nd Annual Pittsburgh Conference on Modeling and Simulation, Part 3: Computers, Computer Architecture, Vision,
Microprocessors in Education, Pittsburgh, PA, May 1991, pp 1581-1588.

[Booch9l G. Booch. Object-Oriented Design With Applications. Benjamin/Cummings, Menlo Park, CA, 1991.

[BTDMWL92] B.M. Barry, D.A. Thomas, J. Duimovich, J. McAffer, M. Wilson, and W.R. LaLonde. "Actra - A
Multitasking/Multiprocessing Smalltalk for Industrial Applications," in [NATO92], pp 1-10.

[Buman92] D.M. Bulman. "An Objective Survey," Embedded Systems Programming, Vol 5, No 3, Mar 1992, pp
20-30.

[BW90] A. Burns and A. Wellings. Real-Time Systems and Their Programming Languages. Addison-Wesley,
Reading, MA, 1990.

[Byrnes93] R.B. Byrnes. The Rational Behavior Model: A Multi-Paradigm, Tri-Level Software Architecture for the
Control of Autonomous Vehicles. Doctoral Dissertation, Naval Postgraduate School, Monterey, CA, Mar 1993 (draft).

[Coffman76] E.G. Coffman (Editor). Computer and Job-Shop Scheduling Theory. Wiley-Interscience, New York,
NY, 1976.

[Grunwald9l] D. Grunwald. A Users Guide to AWESIME: An Object-Oriented Parallel Programming and
Simulation System. University of Colorado at Boulder, Boulder, CO. Report No CU-CS-552-91, Nov 1991.

(GS891 P. Gopinath and K. Schwan. "CHAOS: Why One Cannot Have Only An Operating System for Real-Time
Applications," Operating Systems Review, Vol 23, No 3, Jul 1929, pp. 106-125.

11

[ITM90] Y. Ishikawa, H. Tokuda, and C.W. Mercer. "Object-Oriented Real-Time Language Design: Constructs for
Timing Constraints," OOPSLAIECOOP'90 Proceedings, Ottawa, Canada, Oct 1990; special issue of SIGPLAN
Notices, Vol 25, No 10, pp 289-298.

[Jensen92l E.D. Jensen. "An Architectural Overview of Alpha: An Object-Oriented Real-Time Distributed OS
Kernel," in [NATO92], pp 1-20.

[Kafura88] D. Kafura. "Concurrent Object-Oriented Real-Time Systems Research," ACM SIGPLAN Workshop on
Object-Based Concurrent Programming, San Diego, CA, Sep 1988; SIGPLAN Notices, Vol 24, No 4, Apr 1989, pp
203-205.

[Kcene89] S.E. Keene. Object-Oriented Programming in Common Lisp: A Programmer's Guide to CLOS. Addison-
Wesley, Reading, MA, 1989.

[KL90] D. Kafura and K.H. Lee. "ACT++: Building a Concurrent C++ with Actors," Journal of Object-Oriented
Programming, Vol 3, No 1, May/Jun 1990, pp 25-37.

[KR781 B.W. Kemighan and E.M. Ritchie. The C Programming Language. Prentice Hall, Englewood Cliffs, NJ,
1978.

[LK92] J.H. Lawton and C.D. Krumvieda. "DERIC: A Distributed Object-Oriented Simulation Language," in
[NATO92], pp 1-8.

[MGSW89I S.A. MacKay, W.M. Gentleman, D.A. Stewart, and M. Wein. "Harmony as an Object-Oriented
Operating System," ACM SIGPLAN Workshop on Object-Based Concurrent Programming, San Diego, CA, Sep 1988;
SIGPLAN Notices, Vol 24, No 4, Apr 1989, pp 209-211.

[MK841 J. Miklosko and V.E. Dotov. Algorithms, Software and Hardware of Parallel Computers. VEDA,
Publishing House of the Slovak Academy of Sciences, Bratislava, Yugoslavia, 1984.

[MNK92] G.F. Mota, M.L. Nelson, and U.R. Kodres. "Object-Oriented Decomposition for Distributed Systems"
(draft).

[Moa92) G.F. Morn. Radar Data Processing in a Multiprocessor Architecture. Doctoral Dissertation, Naval
Postgraduate School, Monterey, CA, Jun 1992.

[NATO92] NATO Defence Research Group, Panel 11 on Information Processing Technology. RSG.1 Workshop on
Object-Oriented Modelling of Distributed Systems, DREV/CRDV, Quebec, Canada, May 1992.

[NB921 MI. Nelson and R.B. Byrnes. "A Spiral Model of Object-Oriented Rapid Prototyping," Technology of
Object-Orented Languages and Systems 8 (TOOLS USA'92), Santa Barbara, CA, Jul 1992, pp 111-120.

[Nelson90] M.L. Nelson. An Introduction to Object-Oriented Programming. Naval Postgraduate School, Monterey,
CA, Report No NPS52-90-024, Apr 1990.

[Nelson9la] M.L. Nelson. "Concurrency and Object-Oriented Programming," SIGPLAN Notices, Vol 26, No 10,
Oct 1991, pp 63-72.

[Nelson9lb] M.L. Nelson. "An Object-Oriented Tower of Babel," OOPS Messenger, Vol 2, No 3, Jul 1991, pp 3-11.

[Nelson92] M.L. Nelson. "Concurrent and Distributed Object-Oriented Languages: Promises and Pitfalls," in
[NATO92I, pp 1- 13.

12

[NF921 M.L. Nelson and K.A. Fontes. "Reusability in Object-Oriented Simulation," 23rd Annual Pittsburgh
Conference on Modeling and Simulation, Pittsburgh, PA, Apr-May 1992 (not yet published).

[PN91] E.G. de Paula and M.L. Nelson. "Designing a Class Hierarchy," Technology of Object-Oriented Languages
and Systems 5 (TOOLS USA'91), Santa Barbara, CA, Jul 1991, pp 203-218.

[PW88] Li. Pinson and R.S. Wiener. An Introduction to Object-Oriented Programming and Smalltalk. Addison-

Wesley, Reading, MA, 1988.

[Rowe88] N.C. Rowe. Artificial Intelligence Through Prolog. Prentice Hall, Englewood Cliffs, NJ, 1988.

[SGME92] B. Selic, G. Gullekson, J. McGee, I. Engelberg. "ROOM: An Object-Oriented Methodology for
Developing Real-Time Systems," in [NATO92], pp 1-13.

[SR881 J.A. Stankovic and K. Ramamritham. Tutorial: Hard Real-Time Systems. Computer Society Press of the
IEEE, Washington, D.C., 1988.

[Stroustrup86] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, 1986.

[TM89] H. Tokuda and C.W. Mercer. "ARTS: A Distributed Real-Time Kernel," Operating Systems Review, Vol
23, No 3, Jul 1929, pp. 29-53.

[Wegner87] P. Wegner. "Dimensions of Object-Based Language Design," OOPSLA'87, Oct 1987; special issue of
SIGPLAN Notices, Vol 22, No 12, Dec 1987, pp 168-182.

[WP88] R.S. Wiener and L.J. Pinson. An Introduction to Object-Oriented Programming and C+ +. Addison-Wesley,
Reading, MA, 1988.

[WWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software. Addison-Wesley,
Reading, MA, 1990.

[ZJK90] X. Zheng, E. Jackson, and M. Kao. "Object-Oriented Software Architecture for Mission-Configurable
Robots," International Advanced Robotics Programme (IARP), 1st Workshop on Mobile Robots for Subsea
Environments, Monterey, CA, Oct 1990, pp 63-73.

[ZPMW92] MJ. Zyda, D.R. Pratt, J.G. Monahan, and K.P. Wilson. "NPSNET: Constructing a 3D Virtual World,"
1992 Symposium on Interactive 3D Graphics, Cambridge, MA, Mar/Apr 1992, pp 147-156.

[ZS891 X. Zheng and S. Srivastava. "Events and Actions: An Object-Oriented Approach to Real-Time Control
Systems," IEEE Pacific RIM Conference on Communications, Computers, and Signal Processing, Jun 1989.

13

DISTRIBUTION LIST

Center for Naval Analyses
4401 Ford Avenue
Alexandria, VA 22302-0268 1 copy

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 2 copies

Director of Research Administration, Code 81
Navai Postgraduate School
Monterey, CA 93943 1 copy

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943 2 copies

Dr. G. Bradley
Operations Research Dept., Code ORBz
Naval Postgraduate School
Monterey, CA 93943 1 copy

LCDR D.P. Brutzman, USN
Operations Research Dept., Code ORBr
Naval Postgraduate School
Monterey, CA 93943 1 copy

MAJ R.B. Byrnes, USA
Dept. of Computer Science, Code CS
Naval Postgraduate School
Monterey, CA 93943 1 copy

Dr. R.B. McGhee
Dept. of Computer Science, Code CSMz
Naval Postgraduate School
Monterey, CA 93943 1 copy

Dr. M.L. Nelson, MAJ, USAF
Dept. of Computer Science, Code CSNe
Naval Postgraduate School
Monterey, CA 93943 40 copies

14

